Page 312 - 360.revista de Alta Velocidad - Nº 5
P. 312

Balmaseda, Lucía. Gallego, Inmaculada. Sánchez-Cambronero, Santos. Rivas, Ana.




                 4.    Conclusions



                 The calculations performed on the 3D numeric model of the rail track proved the following
                 conclusions:

                 •  The dynamic stiffness is always greater than the static stiffness and the difference between
                    them decreases as the static stiffness increases.

                 •  For structures with very elastic infrastructures, the dynamic stiffness is greater than the
                    dynamic stiffness by 18%. However, for rail track structures with rigidities of approximately
                    50 to 70 KN/mm, the dynamic stiffness is greater by approximately 2%, which is an almost
                    negligible value.

                 •  The stiffness of high-speed infrastructures needs to be greater than 60 KN/mm, and values
                    between 70 and 80 KN/mm are recommended. In these cases, the difference between static
                    stiffness and dynamic stiffness is very small. Therefore, use of the simplifying assumption
                    that the static stiffness is equal to the dynamic stiffness seems reasonable.

                 •  The dynamic amplification coefficient is the result of relating this dynamic loading to the
                    static value of the load. The comparison of the analysis of the coefficient values obtained
                    using  Prud'Homme  with  the  analysis  obtained  using  the  Eisenmann  formula reveals  the
                    limitations of the latter formula.

                 •  Is a good approach to use Eisenmann for stiffness superiors to 80 KN/mm, but for more
                    flexible compositions we would be overdesign the infrastructure.

                 •  In addition, the formulas converge in zones of transition where appear the MGT, reason why
                    doesn’t seem suitable to use it to determine the embankment on the rest of the high speed
                    line.


                 5.    References



                 •  Comité D-71, (ORE), (Office de Recherches et d`Essais de l`Union Internationale des Chemins
                    de Fer), (1970), Sollicitation de la voie du ballast et de la plateforme sous l`action des
                    charges roulantes, RP1.

                 •  Comité  D-117,  (ORE),  (Office  de  Recherches  et  d`Essais  de  l`Union  Internationale  des
                    Chemins de Fer), (1983), Adaptation optimale de la voie classique au trafic de l’avenir,
                    Rapport nº 28 - Abaques de comportement du système voie/fondation-.

                 •  Gallego,  I. y López, A. ,2009.  Numerical  simulation  of  embankment–structure  transition
                    design., Proceedings of the Institution of Mechanical Engineers, PartF: Journal of Rail and
                    Raspid Transit, Vol. 223, pp. 331-343.

                 •  Gallego, I, et al., 2011. Vertical track stiffness as a new parameter involved in designing
                    high speed railway, Journal of Transportation Engineering (ASCE), Vol.137(12), pp. 971-979

                 •  Gallego,  I.  Heterogeneidad  resistente  de  las  vías  de  Alta  Velocidad:  Transición
                    terraplénestructura. Editorial Academica Española, 2012





            310                                                                             360.revista de alta velocidad
   307   308   309   310   311   312   313   314   315   316   317