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Abstract

The maximum design speed of high speed trains is the maximal speed the train 
is operating in regular traffic. Due to certification and testing purposes the real 
maximum speed is higher. Historically the maximum design speed was understood 
as a constant value, which is depending on factors like distance to be travelled 
between two stops, traffic volume, energy cost etc. The study to be presented 
here aims to show, that the maximum design speed is a variable value depending 
as well on factors as willingness to pay, which is again depending on variables like 
airplane ticket prices or even petrol prices.  
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1.	 Introduction and current discussion of high-speed mass transport systems 

When Elon Musk published his Hyperloop-Alpha paper in 2013 [1], he explicitly referred to 
the California High-Speed Rail project, but ironically enclosed the term “high-speed” by 
quotation marks. This way he wanted to express his disappointment on the intended speed 
level, which is 350 km/h at most or 264 km/h on average between San Francisco and Los 
Angeles. 

He even finally concluded: “How could it be that the home of Silicon Valley and JPL, doing 
incredible things like indexing all the world’s knowledge and putting rovers on Mars, would 
build a bullet train that is both one of the most expensive per mile and one of the slowest in 
the world?” With this background, the spectacular solution Mr. Musk is envisioning, is targeted 
to run at a maximum of 1220 km/h and is supposed to operate in sealed partial-vacuum tubes 
in order to substantially reduce the aerodynamic drag.  

Surprisingly the discussion of the Hyperloop concept does not comment at all on the actual 
technology leader in terms of speed which is the MAGLEV system that initially was targeted 
on 500 km/h operational speed not being the end point of its technical potential [2], [3]. 

A lesson to be learned from the MAGLEV experiences is about the application of a customized 
track system elevated and supported by pylons that the Hyperloop-Alpha paper assumes to be 
a major item to save money compared to conventional rail track systems. 

However, the incompatibility to existing rail infrastructure either requires to purchase premises 
for stations where they are in particular expensive  if available at all, i.e. in downtown areas,  
or to accept access times similar to planes which in turn compromises optional travel time 
gains by higher running velocities. 

In order to point out the significance of this drawback, opponents here may refer to the fact 
that several prominent plans to install long-distance MAGLEV lines have been abandoned in 
favor of wheel-rail technology in the past [4], although the MAGLEV technology has proven its 
technical maturity since the 1980’s. Examples are the connections from Beijing to Shanghai 
or from Hamburg to Berlin. 

The potential counterexample is Chuo Shinkansen from Tokyo to Nagoya that, by the current 
state of knowledge, will be the first long-distance MAGLEV line and open in 2027 [3], [5]. 
However even there, the approval of the Japanese government to construct this new line 
was given under the condition, “it could be rebuilt to a conventional high-speed line later, if 
necessary” [6]. 

There is no doubt, the existing rail infrastructure, its pure construction value on a global 
economic scale, its availability in urban centers,  defines the competitive edge of the 
traditional wheel-rail technology. 

However in view of the challenges posed by the mobility megatrend very high speed is 
nevertheless an issue for the steel-on-steel technology.

In fact, the pure technical feasibility of classical trains is not limited to today’s maximums 
speeds of to say 350 km/h. The TGV world record of 2007, when 574.8 km/h maximum speed 
were reached,  is surely the outstanding example to substantiate this statement. But actually 
it is only the leading one in a series of records of experimental or commercial train lay-
outs since 1980, in which competing suppliers and operators showcase their capabilities, see 
Figure 1. 
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Even though the record runs of experimental vehicles in Figure 1 each document a certain 
status of feasibility, which is still to come for the Hyperloop idea, their relevance for every-
daypurposes is actually limited. The TGV world record for instance was conducted on a brand 
new high speed line exploiting downhill segments with increased catenary tension and voltage, 
the test vehicle was assembled with additional powered axles, larger wheels and deployed 
aerodynamic improvements. Since these circumstances cannot be transferred to regular 
operation, an interesting question in consideration of the summary in Figure 1 and in competition 
to the Hyperloop and the MAGLEV concept still remains unanswered, namely: 

What is a reasonable upper speed limit for high speed wheel-rail systems in daily operation?  
This question was adopted to be elaborated within the project to be introduced in the following 
section. 

2.	 DLR’s Next Generation Train Project 

In 2007, DLR initiated a long term research project on a future railway vehicle called Next 
Generation Train (NGT). Eight high level objectives were specified: 

•	 Increase in the permitted speed in daily operation to 400 km/h and additionally explore the 
velocity range up to 600 km/h 

•	 Halving the specific energy demand compared to the ICE 3 at 300 km/h 

•	 Noise reduction 

•	 Increase in comfort 

•	 Improvement in vehicle safety 

•	 Improved wear behaviour and life cycle costs 

•	 Cost-efficient construction using modulisation and system integration 

•	 Improvement in efficiency of development and approval processes 

Figure 1. Maximum speed of passenger trains in the last 40 years,                                               
*concept study experimental = technical modified or prototype vehicles commercial = vehicles 

are used in daily operation.
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With this background, a concept for a train set of 202 m length consisting of eight coaches and 
two train heads was developed and named NGT HGV , see Figure 2. 

Figure 2: Side view of the NGT HGV with leading train head and first intermediate coach

Important features considered by this train concept may be summarized as follows: 

•	 Double deck configuration in order to increase the number of seats per train length and in 
turn reduce energy consumption per seat 

•	 Ambitious light weight design and streamlined construction of carbodies and running gears 
accordingly 

•	 Use of running gears with independently rotating and driven wheels throughout the complete 
train set in order to distribute traction effort, actively control running stability and reduce 
wear and noise 

Due to the organization of DLR, the NGT project could be organized as a joint effort of 11 
institutes involving disciplines such as structural mechanics, vehicle dynamics, aerodynamics, 
electrical engineering as well as systems and operational engineering. 

The same wide-range expertise could also be exploited to explore the speed range up to 600 
km/h and elaborate on the “reasonable upper speed limit” question posed in the section above. 

3.	 Technical Aspects related to higher train speed 

3.1	 Vehicle Dynamics 

Modern high speed trains are complex systems and quantities such as forces, accelerations or 
wear result from the interaction of many components and environmental as well as operational 
influences. In order to master a fundamental question as given, it is helpful to subdivide the 
transportation task from the vehicle-dynamical point of view, which leads to three sub-tasks 
each focused on one specific direction of motion, cf. [7]:  

a.	 load bearing, that is mainly related to the vertical dynamics of the vehicle, 

b.	 guidance, which is associated to the lateral dynamics along curved and tangential track and  

c.	 traction in order to transmit propulsion and braking forces in longitudinal direction. 

As regards a., i.e. vertical dynamics, the comfort of the passengers is dominated by forced 
vibrations of the bounce and pitch motion of the vehicle, cf. [7, p. 14], which in turn are ruled 
by the quality of the track and the train speed. Due to human perception, comfort is in addition 
a function of the vibration frequency with the main emphasis on frequencies between 4 and 8 
Hz [8].   

On the one hand, measurements of non-ideal , real tracks expose a rise of irregularity amplitudes 
for increasing wavelengths.  On the other hand the excitation frequency, the vehicle is exposed 
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 to, is a linear function of the train speed divided by the wavelength. These two relationships 
together constitute the following effect: as regards a specific frequency under consideration, 
the wheels are excited by larger amplitudes, if the train runs faster on the same, non-ideal 
track. In turn, the vibration comfort will be compromised and higher dynamic contact wheel 
-rail forces will stress wheels and rails for higher train speeds.  

However, passenger railway vehicles use two levels of suspensions and it is a matter of concept 
and design tuning to organize a comfortable train ride and keep the dynamic forces at the wheel-
rail interface within acceptable limits. There is a large, so far unexploited potential to deploy 
active or semi-active components which allow for online adaption of suspension characteristics 
to the train speed and the track quality is a tuning parameter as well. In summary, train speeds 
up to the range of the TGV record seem to be feasible even in daily operation concerning 
vertical dynamics. 

As regards b., the lateral dynamics of railway vehicles is strongly related to the so-called 
hunting motion1 : lateral track irregularities initiate lateral oscillations of the wheel-sets that 
are intended to be damped out in order to fulfill the guidance task. However, the stability of 
this hunting motion depends on the vehicle speed, which defines a requirement for vehicle 
design. Measures such as low equivalent conicities of the wheel-rail contact geometry [16], 
[9], adjusted stiffnesses of the primary suspensions [10], additional yaw dampers [11], [12], 
long wheel-bases [10] among others increase the stability region or the maximum speed a 
vehicle is capable of running safely, respectively. It can be concluded that a proper mechanical 
design provides a stable running of a railway running gear even at very high speeds. As Delfosse 
mentioned in [13], the simulation of the modified TGV unit, which set the former speed record 
of 515.3 km/h, showed that the critical speed of the train was above 700 km/h.  

Figure 3: Exemplary estimation of wheel wear as a function of vehicle speed

1     Streaktly speaking, this applies to the vast majority of railway vehicles that use wheel-sets, only.
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Wear is another aspect to be taken into account. In order to transmit tangential forces it is 
required to violate the ideal rolling condition at the wheel-rail interface, i.e. there is a small 
relative motion between the contact partners, which leads to sliding friction [14]. Wear or 
more precisely the volume of abrasive removed material is related to the associated frictional 
work [15]. However, wear and rail corrugation are very complex processes, so that a general 
statement how they depend on the train speed is difficult and out of reach in the given context. 
Just in order to get an  idea,  a multibody simulation of a today’s articulated highspeed train 
with 6 cars, two bogies each car, 16t load per wheel-set, running on a straight track was 
performed considering track irregularities. The material abrasion at the wheels per traveling 
distance as a function of vehicle speed was evaluated on a trial basis. The exemplary results 
in Figure 3 expose a rough trend: wheel wear for guidance grows progressively with the train 
speed.  

The wear partition associated to traction, i.e. longitudinal dynamics, grows less intense but 
still with the fourth power of the vehicle speed as shown in Figure 3. This characteristic is based 
on the fact that the longitudinal forces at the wheel-rail interface depend on the resistance 
forces which in turn are dominated by the aerodynamic drag at very high velocities.  

The traction potential itself is as well a function of the running speed. According to the prominent 
historical survey by Curtius and Kniffler [16], the friction coefficient converges asymptotically 
against μ = 0.16 on average for very high speeds, while the lower bound of the measurements 
indicates μ = 0.1 to be a very reliable figure. The aerodynamic drag may approach values of 
approximately 200 kN at 600 km/h, which requires 13 wheel axles each loaded with 16 t be 
counterbalanced by traction with μ = 0.1. This appears to be feasible but indicates the necessity 
to power as much wheels as possible in order to fully exploit the available traction potential. 
That’s why one intermediate car of TGV 150 that set the world speed record of 574.8 km/h in 
2007 was equipped with additional powered running gears [17]. 

3.2	 Aerodynamics 

Usually the aerodynamic forces like the drag scale with the stagnation pressure ρV²/2, where 
ρ is the density of the air and V is the incident flow velocity in the reference frame of the 
vehicle. In still air V corresponds directly to the driving speed U. It follows that the power which 
is required to equalize the aerodynamic drag is proportional to U³, and at higher speeds the 
aerodynamic drag will exceed the effect of mechanical friction [18]. 

However, today’s driving speeds up to 600 km/h correspond to a Mach number of M ≈ 0.5, so 
that new aerodynamic effects associated to the compressibility of the fluid enter the picture. 
The critical Mach number specifies the lowest Mach number at which the airflow over some 
point of the train reaches the speed of sound. Above this critical Mach number the aerodynamic 
quality of the vehicle will degenerate rapidly. To push the critical Mach number above M = 0.5 a 
train requires a relatively long pointed nose similar to the Japanese Maglev train [19]. 

A highly safety relevant aerodynamic aspect concerns the crosswind stability in particular if 
lightweight design is under consideration. Although newer train head designs show elements 
to reduce the cross-wind forces [20], [21], the optimization potential is limited in general. 
Investigations with the NGT train concept support the assumption that operational train speeds 
beyond 400 km/h require a specific device to prevent the lift-off and overturning of the vehicle 
as it is proposed in [22] or as it is conceptually given by the MAGLEV guidance system. An 
alternative way to deal with the cross-wind issue at higher speeds is to protect the train from 
strong gusts using wind fences. Such fences could act as sound barrier at the same time and 
help to reduce noise emissions of high speed trains. 

Another safety relevant aspect concerns the aerodynamic loads which the flow around the train 
induces on its surrounding. These loads typically as well scale with the square of the driving 
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 speed. Either the track-side objects like noise barriers or signal installation are placed at a 
larger distance from the track or the objects are designed more sturdily to withstand the higher 
loads. 

In the range of 200 to 300 km/h the aeroacoustic emissions of a typical high-speed train are 
in the same order as the wheel-rail sound. At higher speeds above 300 km/h the aeroacoustic 
effects dominate [23]. The flow around structural elements like the parts of a pantograph cause 
a dipole type sound emission whose intensity scales with U⁶ [24] [25]. This means a pantograph 
at 600 km/h radiates about 64 times more acoustic power to its surrounding than at 300 km/h. 
The measurements presented by Kurita [26] showed that a reasonable noise reduction can be 
achieved by using aerodynamically optimized pantograph geometries, acoustically absorbing 
surfaces, and so called noise insulation plates on the roof of the train (see also Yamada et 
al. [27] and Ikeda et al. [28]). The insulation plates shield the acoustic emissions from the 
pantograph in lateral direction. The experiments of Baldauf et al. [29] showed that by using an 
actively controlled single-arm pantograph it is possible to reduce the pantograph noise about 
10dB compared to the standard pantograph installed at the German ICE trains. Combining new 
pantograph designs and noise insulation plates, it appears not unrealistic that the radiation 
intensity of the pantograph noise at 600 km/h can be reduced to today’s standard level at 
330 km/h. Thus the aeroacoustic emissions of pantographs do not constitute an insuperable 
obstacle for train speeds above 400 km/h. 

3.3	 Signaling and Train Control 

In an approximation the braking distance grows quadratic with the speed, which means that the 
minimal braking distance increases from 2800m to estimated 11.2 km at 300km/h. Hence it is 
state of the art, that drivers cannot control the train by trackside signaling at speeds above 160 
km/h. Nevertheless all the elements required for a suitable train control and signaling system 
are available today:  

•	 Cab Signaling 

•	 Safe and reliable radio connections 

•	 Safe on-board Localization  

•	 Train Integrity Supervision in multiple units 

•	 Continuous control and supervision of speed 

•	 Train separation by moving block  

•	 Automatic Train Operation (ATO) 
 
Most of the Elements are part of the European Rail Traffic Management System ERTMS and 
proven in use. Only two of the required technologies are currently objective of ongoing research 
activities: moving block and ATO. Therefore it can be stated that the signaling needs to be 
adopted for very high speeds but it is not limiting the development.  

4.	 Operational Aspects related to higher train speed 

Travel time savings are only possible if the train uses high-speed lines (HSL) for a big part of the 
journey. Therefore new tracks are necessary to increase the speed to over 320 km/h, which is 
the current speed maximum in Europe. 

Furthermore an efficient operation is only possible with lines exclusively used by high-speed 
trains during the operation time of day. The higher the speed difference on mixed-traffic lines 
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is (with high-speed, freight and regional trains) the more line capacity gets lost. For a speed 
over 200 km/h it is difficult to operate mixed traffic lines [30]. Many of the HSLs in the world 
are used exclusively by high-speed trains: Ligne a grande vitesse in France, Shinkansen in 
Japan, Passenger Dedicated Lines (PDL) in China and Lineas de Alta Velocidad (LAV) in Spain. 
The different gauge between HSL and the old network in Spain and Japan prevents these lines of 
being used by conventional trains. In Germany most of the HSLs are built to allow mixed traffic 
all the day. The advantage is a better line utilization and a more efficient freight train operation 
due to shorter route length, low gradients and possibly longer trains. Due to safety reasons 
in tunnels and capacity restrictions the freight traffic is limited to the night time when there 
is no passenger traffic. The disadvantage is this concept is the lack of time for maintenance 
works which has to be done with track or total line closures [31]. In France or Japan HSLs are 
completely closed for intensive maintenance all the night. 

To increase the capacity of an HSL the trains should be operated at the same speed. For this 
also trains with more stops (comparable to the Kodama trains on the Tokaido Shinkansen in 
Japan, which stop every 15-50 km) have to use strong motorized vehicles [32].  

A general problem of increasing the speed of passenger trains is a growing disparity between 
the operational effort (energy, wear, etc.) and the travel time savings. The travel time reduces 
in a hyperbolic way, the additional benefit diminishes with higher speed, but the effort grows 
exponentially. 

4.1	 Optimized Traction force with very high speed 

For the operational analysis special train models for 300, 500 and 600 km/h are derived from 
the specified NGT 400. For the 300 km/h level also a special version of the NGT is used and not 
existing HSTs to preserve comparability.  

The dimension of the engines increases drastically with the speed. The 400 km/h version has 
to handle 18 MW driving power whereas the 600 km/h version has to be designed with at least 
40 MW. The latter value doesn’t include efficiency losses and power demand of auxiliary and 
comfort systems so the electrical systems have to be designed with significantly more power. 
Usually trains are designed with additional traction force for instance to handle gradients. 
In view of the enormous propulsion power to install the idea is to dispense with a reserve. A 
simulation showed that the effect of this saving is not significant. For a line like the new built 
one from Stuttgart to Ulm there are some sections with 25‰ gradient. Considering a quite 
low slack time percentage of 3% the journey between the two cities would be only 20 seconds 
longer. Thus other use cases look similar and it can be stated that a design without a traction 
force reserve is acceptable. 

4.2	 Demand analysis for the reference line Paris-Vienna 

To gather information about the effect on passenger demand of increased travel speed, the 
NGT reference line from Paris to Vienna is chosen for analysis. An operational concept for this 
line for 400 km/h was developed at an earlier stage of the NGT project [33]. The model is 
reused and modified for the following speed levels: 300, 400, 500 and 600 km/h.  The passenger 
demand model is based on the European rail network. It includes almost all cities with 50 000 
inhabitants and more. These are 1900 cities with 237 Mio inhabitants in countries totaling 
525 Mio inhabitants. 120.000 kilometers of rail lines (50% of the real network) are used by 
2000 routes with an accurate modelling of travel times and stops. Statistical data for the 
calibration originates from Eurostat [34]. It has accuracy on the NUTS-2 level. These are smaller 
countries in Germany or regions in France. Additional data from the UIC statistics was used 
to complement and verify the Eurostat values [35]. The model is used with four operational 
scenarios corresponding to the speed levels. 



Technological, economic and sociological factors on the maximum design speed of high speed trains

 

41International Congress on High-speed Rail: Technologies and Long Term Impacts - Ciudad Real (Spain) - 25th anniversary Madrid-Sevilla corridor

 Table 1 shows the results of the analysis. With 600 km/h a train journey between the 
stations in Paris and Vienna would take approx. three hours. 83 Mio passengers would use 
the 1145 km line with intermediate stops in Strasbourg, Stuttgart, Munich and Salzburg. The 
400 km/h train covers the distance within around 4 hours and attracts 69 Mio passengers, 
while the 300 km/h version takes around 5 hours and attracts 55 Mio passengers. 

The transport performance is raised by two thirds between 300 and 600 km/h from 19 to 31 
bn. pkm/year. The acceleration from 300 to 400 km/h generates almost half of this benefit 
(5 bn. pkm/year). The increase from 500 to 600 leads to an increase of 2.6 bn. pkm/year. 
So the benefit gets smaller with rising speed, which is directly related to the travel time 
savings. 
 

Table 1: Growing Demand on the reference line Paris - Vienna depending on the speed

300 km/h 400 km/h 500 km/h 600 km/h 

Travel time Paris-Vienna [h:min] 4:42 3:51 3:23 3:03

Passengers [Mio/year] on reference line 55.3 69.1 77.2 83.0

Passenger km [Bn.Pkm/year] on reference 
line 

19.00 24.84 28.38 30.99 

Mechanical energy consumption (at 
wheel level) [MWh] for one run Paris 
Vienna 

19.2 31.6 44.8 60.8

Hence the doubling of the travel speed from 300 to 600 km/h results in a reduction of travel 
time by 35%, an increase of travel demand by 63% and an increase of energy consumption by 
216%. 

The heaviest usage of the line can be found between Paris and Strasbourg, between Stuttgart 
and Munich and on the Austrian part of the line. Despite the strong national traffic volumes, the 
international traffic profits most of the new travel speed. The traffic volume between Austria 
and Germany as well as between Austria/Germany and France is growing much stronger than 
the national ones.  

4.3	 Impact of very high speed on the operation 

The increasing traffic volume effects a more intensive train operation as shown in Figure 4. 

One train per hour and direction with a capacity of 800 passengers is necessary when the 
line is designed for 300 km/h. With 600 km/h two and a half trains per hour and direction 
have to circulate. Additional trains run between Paris and Strasbourg and between Stuttgart 
and Vienna. More additional trains are necessary between Stuttgart/Munich and Salzburg/
Vienna. 

A train every 15 minutes will run between Stuttgart and Munich with 300 km/h. This increases 
to a frequency of every 10 minutes between the two cities with 600 km/h. All these values are 
valid in the morning peak hour. 
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Table 2 shows the results of the operational analysis of the different speed levels. The average 
speed between Paris and Vienna is increasing by 53%, whereas the average speed of all passengers 
using a part of line is increasing by 23%. The big percentage of using classical railway and the 
access and egress times reduce this kind of speed. But this value tells us to require big efforts 
for a network-wide increase of speed and the combination of fast access transport modes like 
urban public transport or private car or car-sharing in less-dense populated areas. 

The number of necessary trainsets is similar over the speed levels, because the higher speed allows 
a more intensive use of trains which compensates the higher demand. The traffic (operational) 
performance increases by 57%, though the speed is doubled and the energy consumption triples. 
This figure shows the faster growing effort compared to a regressive benefit. The operational 
performance of the trainsets is impressively high; at 600 km/h the project-defined limit of one 
million kilometres per year is exceeded. A very intensive maintenance is necessary. Probably 
this will be a big part of the operational cost. The life expectancy probably won’t be 30 years as 
those by other rail vehicles, especially taking the lightweight construction into account. Thanks 
to a compulsory reservation and the relative small vehicle size, it’s possible to reach high seat 
utilization of above 80%. 

Table 2: Compilation of operational aspects for the speed levels

 300 km/h 400 km/h  500 km/h 600 km/h

Average speed between Paris and Vienna [km/h] 244 297 338 375 
Average speed of all passengers using the line at 
least for a part of the journey including dwell/
access/egress times [km/h] 

119 130 138 146 

Specific energy consumption at wheel level 
[Wh/(km * seat)] 21.0 34.5 48.9 66.4 

Number of NGT trainsets  (incl. 10% operational 
buffer) 37 40 42 44 

Operational performance on the line Paris-
Vienna [Mio trainset-km/year] 29.4 36.3 40.7 46.3 

Average operational performance of one NGT 
trainset [km/year] 786 000 916 000 973 000 1 052 000 

(above limit)

Seat utilization (reservation compulsory) 81% 86% 87% 84% 
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 5.	 Conclusions  

However even if the exact quantitative values are treated with reserve,  Figure 5 nevertheless  
presents a common trend: whatever effort is considered, there is a progressive rise with respect 
to the maximum operational speed. The higher the considered level the more costly each 
additional speed step-up turns out to be.  

This is contrary to the expected benefit in terms of travel time reduction, which performs on a 
diminishing scale. Traveling at 400 km/h maximum speed results in a travel time reduction of 
18% compared to travelling at 300 km/h, while 600 km/h maximum speed reduces the travel 
time just by 10% compared to 500 km/h. Note, already the time span t(v) required to travel a 
fixed given distance s is a  hyperbolic, i.e.  a declining,  function of the velocity v, reviewed 
under steady-state conditions temporarily disregarding operational aspects. 

As a final result, the authors expect the maximum velocity in operation to tend against a 
saturation point, but which is depending on external factors, too. The balancing of the benefits, 
efforts and issues such as crosswind stability and energy supply substantiates the assumption 
that a further increase of the maximum speed of wheel-rail systems beyond 400 km/h will 
depend on external influences and looks apparently not reasonable today, which could change 
in the future under changed conditions. The technology will be there to support to run with 
even higher speeds. 
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